
Whitepaper

Welcome to the Galaxy of Calamari Ingots (BESKAR)

A Universal Currency for All Space Sagas

Welcome to the new frontier of cosmic finance, where the legacies of interstellar trade and commerce

are celebrated and continued. Calamari Ingots, known on exchanges as BESKAR, are not just a

cryptocurrency; they are an homage to every galaxy far, far away and the complex economies that drive

them—from the bustling trade routes of Star Wars to the sprawling cosmic empires of recent anime.

Celebrate the Legacy of Space Sagas

Space sagas, from epic film series to captivating anime, have always stretched the limits of our

imagination. They've introduced us to worlds where entire galaxies interact, trade, and sometimes

conflict over resources. Central to these narratives is often a universal or galaxy-wide payment system,

enabling diverse species and civilizations to engage in commerce and diplomacy. Calamari Ingots

(BESKAR) embody this spirit—a currency designed for the vast and interconnected digital cosmos.

Embrace the Future of Universal Transactions

Standing at the brink of our own technological evolution, Calamari Ingots aim to bridge the fictional with

the real. Crafted for the age of digital economies, they ensure seamless transactions across borders,

planets, and star systems. Whether you're trading on Earth or planning for transactions in the distant

Nebula markets, Calamari Ingots provide a stable, secure, and universally accepted medium of exchange.

Join Our Galactic Community

Step into a community of enthusiasts, traders, and dreamers. Calamari Ingots aren’t just about financial

transactions; they’re about building a network of users who share a passion for the cosmic tales that

have inspired generations. Participate in discussions, trade tips, and celebrate new releases and classic

favorites of space saga films and anime.

Ready to Explore?

Your adventure begins here. Navigate through our site to learn more about Calamari Ingots, how to

acquire them, and how to use them in your daily and intergalactic transactions. Together, let's turn the

page on the future of currency and step into a universe where commerce knows no bounds.

About

Welcome to the Calamari Ingots Meme Coin Page

Discover the dynamic world of Calamari Ingots, the meme coin known as BESKAR on exchanges. Embark

on a journey where you can actively participate in shaping the future of digital commerce across

galaxies.

Become a Liquidity Provider

Start your adventure by becoming a liquidity provider. By contributing to liquidity pools, you not only

facilitate smoother transactions within the ecosystem but also earn rewards. Learn how to add your

BESKAR to pools on platforms like PancakeSwap and earn a portion of the trading fees in return.

Stake for Rewards

Take advantage of our staking options to maximize your holdings. Stake your Calamari Ingots (BESKAR)

and watch as they grow with competitive annual returns. It's simple, secure, and rewarding—a perfect

way to increase your stake in the galaxy's future.

Try Our LP Staking Contract

For liquidity providers looking to further maximize their returns, try our LP staking contract. This feature

allows you to stake your LP tokens earned from providing liquidity, enhancing your reward potential

through additional staking benefits.

Explore Anonymity with Our Smart Contract

For those who value privacy, dive into our anonymity contract currently available in Remix, with a

dedicated user interface set to launch in the coming phases. This feature allows you to conduct

transactions with enhanced privacy, ensuring your activity remains confidential.

Coming Soon: Loan Contract

Looking ahead, Phase 2 or 3 will introduce a groundbreaking loan contract. This addition will enable you

to leverage your BESKAR holdings to secure loans, empowering you with more flexibility in how you

manage and utilize your assets. Stay tuned for this exciting development.

Ready to Join the Calamari Ingots Community?

Embark on your journey today! Dive into the world of Calamari Ingots and take part in a financial

revolution that spans across the universe. Whether you’re staking, providing liquidity, or exploring our

advanced contract features, Calamari Ingots offers you a gateway to the future of finance.

Explore, engage, and expand your horizons with Calamari Ingots, where your financial adventure awaits!

Roadmap

Phases for Calamari Ingots (BESKAR)

Phase 1: Foundation and Launch

 Launch Activities: Kick off with a robust token launch to secure Calamari Ingots’ position in the

market. This includes provisioning initial liquidity to ensure seamless transactions for early

adopters.

 Community Engagement: Develop a vibrant community foundation through targeted social

media campaigns, strategic airdrops to reward early supporters, and forging partnerships with

key fintech and crypto entities. These efforts aim to foster a strong and engaged user base

excited about the potential of Beskar.

Phase 2: Ecosystem Development

 Anonymity Vault Integration: Introduce an Anonymity Vault to enhance transactional privacy for

all users, reinforcing Calamari Ingots' commitment to security and privacy. This feature is crucial

for users prioritizing discretion in their digital transactions.

 Loan System Implementation: Roll out an innovative loan system that utilizes Beskar as

collateral, providing flexible financial solutions to users. This system is designed to support

liquidity within the ecosystem while offering additional utility to the token.

Phase 3: Expansion and Sustainability

 Liquidity Milestones: Set and achieve critical liquidity milestones that will initiate a staged

liquidation process. This strategic move is designed to ensure the long-term sustainability and

growth of the Calamari Ingots ecosystem by managing the supply effectively.

 Ecosystem Expansion: Continue to build out the Beskar ecosystem with the introduction of new

features and utilities. This includes potential integrations with other platforms, expansion into

new markets, and ongoing development to keep pace with evolving blockchain technology.

Phase 4: Global Recognition and Operational Excellence

Achieving $20M in Liquidity: Reach and surpass a liquidity threshold of $20 million, which will bolster

market stability and investor confidence.

Major Exchange Listings: Aim for listing on major exchanges like Binance and Coinbase, enhancing

visibility, accessibility, and trading volume of Beskar.

Regulatory Compliance and Partnerships: Strengthen compliance with global regulatory standards and

forge strategic partnerships with major financial institutions to enhance credibility and operational

reach.

Phase 5

 Advanced Feature Rollouts: Introduce more complex financial instruments and services, such as

derivatives and futures, linked to Beskar to diversify its utility and appeal.

 Sustainability Initiatives: Implement initiatives aimed at promoting sustainability within the

ecosystem, such as green mining practices and contributions to carbon offset programs, aligning

with global efforts to combat climate change.

How To Buy

How to Buy Meme Coin

Meme Coin is available for purchase on PancakeSwap, one of the leading decentralized exchanges that

allows for swapping of crypto tokens without the need for an intermediary. To buy Meme Coin, simply

visit PancakeSwap’s swap interface. Ensure you have a compatible wallet such as MetaMask or Trust

Wallet connected to the site. For trading, you can use the BNB/BESKAR (Calamari Ingots) pair to swap

BNB or any other available token for Meme Coin. Follow the on-screen instructions to execute your trade

safely and securely.

https://pancakeswap.finance/swap?outputCurrency=0xd9938C445897e6BDD3cCdA842d55104e7C58d6

5c

The purchase will be available on the 16th of April at 11pm for North America, CST. which is on the 17th at

9am in Europe, Amsterdam time CET

https://pancakeswap.finance/swap?outputCurrency=0xd9938C445897e6BDD3cCdA842d55104e7C58d65c
https://pancakeswap.finance/swap?outputCurrency=0xd9938C445897e6BDD3cCdA842d55104e7C58d65c
https://pancakeswap.finance/swap?outputCurrency=0xd9938C445897e6BDD3cCdA842d55104e7C58d65c

Tokenomics

Tokenomics of Calamari Ingots (BESKAR)

Initial and Maximum Supply

 Initial Supply: 100 trillion (100T) Beskar tokens will be initially minted to establish a strong

foundation for market entry and facilitate early distribution and adoption.

 Maximum Supply: The total supply of Beskar tokens is capped at 1,000 trillion (1,000T). This cap

ensures scalability and utility enhancement within the ecosystem over time, safeguarding

against inflation and maintaining token value.

Distribution Strategy

 Founder's Allocation (30%): To support the project's initial phase, ongoing development, and

strategic vision, 30% of the initial supply is reserved for the founders. This includes a responsible

liquidation plan that allows for up to $150,000 to be liquidated only after achieving a liquidity

milestone of $2 million. This plan emphasizes the founders' commitment to sustainable growth

and long-term value creation, with an aspirational liquidity goal of $200 million.

 Liquidity Pool (40%): Ensuring a stable and liquid market is vital. Therefore, 40% of the initial

supply is allocated to liquidity pools on various decentralized exchanges. This strategic liquidity

provision is essential for enabling smooth trading experiences and minimizing price volatility,

which attracts and retains users.

 Future Development (30%): Dedicated to ensuring the continuous growth and enhancement of

the ecosystem, this portion of tokens is set aside for new projects and initiatives. It funds the

development of key features like the Anonymity Vault and Loan System, improvements to the

staking protocol, community-engaging airdrops, and robust marketing campaigns to broaden

outreach and adoption.

Minting and Burning Mechanism

 Minting: New tokens can be minted exclusively through the staking of existing Beskar tokens.

This method ties the creation of new tokens to participant activity, aligning token supply with

actual ecosystem usage and demand, thus promoting economic stability.

 Burning: A burning mechanism is in place to allow for the reduction of the total supply when

necessary. This feature is designed to counteract potential inflationary pressures and enhance

the intrinsic value of Beskar tokens over time.

Features

Contracts and Unique Features of Calamari Ingots (BESKAR)

Anonymity Vault System

OutOnlyVault: At the heart of our commitment to privacy and security lies the OutOnlyVault, a

sophisticated contract system that supports ERC20 transactions with enhanced privacy. This system uses

a unique passkey for each transaction, mirroring the privacy of cash transactions while ensuring security

and ease of use. Designed for those who prioritize discretion, this system facilitates private transactions

without exposing details to the public ledger, maintaining the confidentiality of all parties involved.

Loan System with Auto-Liquidity Contribution

This cutting-edge feature allows users to take secure loans by automatically contributing the loan's

collateral to the ecosystem’s liquidity pools. Here’s how it enhances the ecosystem:

 Enhanced Liquidity: By locking the collateral in liquidity pools, this system ensures there is

always sufficient liquidity available, thereby stabilizing the market for Beskar tokens.

 Sustainable Interest Handling: All interest generated from these loans is directed back into the

liquidity pools and is permanently locked, further supporting the ecosystem’s financial health.

Staking and Token Minting

Our staking protocol is designed to encourage long-term holding and active participation within the

Calmari Ingots ecosystem:

 Rewarding Engagement: Token holders can stake their Beskar to earn rewards, promoting a

vibrant and active community.

 Growth Through Participation: This approach not only secures the network but also ensures

that the tokenomics are driven by genuine user engagement and ecosystem utility.

Utilization of Funds

The strategic liquidation of funds from the founder's allocation is executed with precision, focusing on

substantial ecosystem enhancements:

 R&D and Innovation: Funds are allocated towards research and development, powering

continuous improvements and innovations within the platform.

 Community and Market Expansion: Significant investments are made in community

engagement and marketing strategies to broaden the user base and enhance market presence.

 Infrastructure Development: Resources are also channeled into expanding the Anonymity Vault

and enhancing the loan system, ensuring the platform remains competitive and relevant.

Commitment to Sustainability and Transparency

Calamari Ingots is dedicated to maintaining a transparent, sustainable growth trajectory:

 Transparent Liquidation Strategies: We provide clear, detailed plans for fund usage, ensuring

stakeholders are informed of how resources are being allocated.

 Community-Driven Development: Our operations are structured around community needs and

feedback, fostering a responsive and inclusive ecosystem.

Liquidity

Introduction to Liquidity

Liquidity refers to the ease with which an asset can be converted into cash without affecting its

market price. In the context of decentralized finance (DeFi), liquidity is provided by users who

contribute assets to liquidity pools. These pools facilitate decentralized trading, lending, and other

functions without the need for traditional financial intermediaries.

Liquidity providers (LPs) add their tokens to liquidity pools and in return, they receive liquidity

provider tokens or LP tokens. These tokens represent their share of the pool and can be used to

reclaim their stake, plus a portion of the trading fees.

How to Add Liquidity on PancakeSwap

1. Connect Your Wallet: Start by connecting your digital wallet (e.g., MetaMask, Trust Wallet) to

PancakeSwap.

2. Select a Liquidity Pool: Navigate to the "Liquidity" section of the PancakeSwap interface. You can

choose an existing pool or create a new pair if you have a unique token pairing.

3. Add Liquidity: Enter the amount of the tokens you wish to add to the pool. PancakeSwap will

automatically calculate the equivalent amount of the paired token based on current market

rates.

4. Confirm the Transaction: Approve the transaction from your wallet. Ensure you have enough of

each token and cover transaction fees (gas fees).

5. Receive LP Tokens: Once the transaction is confirmed, you will receive LP tokens that represent

your share of the pool.

Locking Your Liquidity

To enhance security and earn rewards, you can lock your LP tokens. Locking your tokens typically

means committing them for a set period during which you cannot withdraw them. Here's how to

lock LP tokens:

1. Access the LP Staking Rewards Contract: Navigate to the staking section on the website where

the LP Rewards contract is integrated.

2. Choose Lock Duration: Select the duration for which you want to lock your LP tokens. Options

typically include 1, 3, or 5 years.

3. Lock Your LP Tokens: Enter the amount of LP tokens you want to lock and confirm the

transaction. Make sure to review the terms of the lock, especially the lock period and the

penalties, if any, for early withdrawal.

Participating in LP Staking Rewards

Participating in LP staking rewards can significantly increase your returns, often offering higher

interest rates than traditional banking products.

1. Stake Your LP Tokens: After locking your tokens, you can stake them in the LP staking rewards

contract. Navigate to the staking interface and select the amount of LP tokens you wish to stake.

2. Earn Rewards: Rewards are typically calculated based on the amount staked and the duration of

the stake. For example, a 20% annual return rate is applied to your staked LP tokens.

3. Claim Your Rewards: Depending on the contract, rewards can be claimed either periodically or

at the end of the staking term. Follow the instructions on the platform to claim your rewards.

LP rewards Contract

How to use the lp rewards contract

To engage with the staking contract I provided, users will typically interact with the contract through

a user interface that connects to the blockchain using a web3 provider, such as MetaMask. However,

if they are engaging directly through a development environment like Remix, they would not deploy

the contract (since it's already deployed), but they will interact with it using its deployed address.

Steps to Interact with the Deployed Staking Contract using Remix:

1. Setup Remix:

 Open Remix IDE.

 Go to the "File Explorers" and create a new file, e.g., InteractWithLPStaking.sol.

 Paste the interface of the staking contract into this new file. This interface should match the

functions that you plan to interact with.

// Interface for our LP Staking Contract

interface ILPStaking ,

 function stake(uint256 _amount, uint256 _lockDuration) external;

 function unstake() external;

 function calculateReward(address _user) external view returns (uint256);

-

contract InteractWithLPStaking ,

 ILPStaking public lpStakingContract;

 constructor(address _stakingContractAddress) ,

 lpStakingContract = ILPStaking(_stakingContractAddress);

 -

 function stakeTokens(uint256 amount, uint256 lockDuration) public ,

 lpStakingContract.stake(amount, lockDuration);

 -

 function unstakeTokens() public ,

 lpStakingContract.unstake();

 -

 function viewMyReward(address userAddress) public view returns (uint256) ,

 return lpStakingContract.calculateReward(userAddress);

 -

-2. Compile the Interaction Contract:

 Select the "Solidity Compiler" from the sidebar and compile the InteractWithLPStaking.sol file.

3. Deploy the Interaction Contract:

 Go to the "Deploy & Run Transactions" plugin.

 Select "Injected Web3" to connect to your MetaMask.

 Ensure you are connected to the same network where your LP Staking Contract is deployed.

 Deploy the InteractWithLPStaking contract by entering the address of the deployed LP Staking

Contract as a constructor parameter.

4. Interacting with the Contract:

 Once deployed, you can interact with the InteractWithLPStaking contract to stake, unstake, or

view rewards.

 Use the functions provided in the contract deployment interface in Remix to call these methods.

Points to Note:

 Ensure that you have the correct address of the deployed LP Staking Contract when you deploy

the InteractWithLPStaking contract.

 Ensure that you have sufficient tokens and have approved the staking contract to use your

tokens if required by the staking mechanism.

 You can also integrate these functionalities into a web-based DApp using web3.js or ethers.js

libraries, which would interact with the contract's methods in a more user-friendly manner

through a graphical user interface.

This setup provides a basic framework for users to interact with the staking contract

programmatically using Solidity in Remix, suitable for testing or direct blockchain interaction without

a frontend application.

Or

First, ensure that your project includes the Web3.js library. This can usually be added via a package

manager like npm:

bashCopy code

npm install web3

Then, you can create a simple script that allows users to interact with the contract. Here’s an

example of how a user might connect to the contract and call its functions:

javascriptCopy code

const Web3 = require('web3');

// Initialize web3 instance, assuming MetaMask is used for accessing Binance Smart Chain

const web3 = new Web3(window.ethereum);

// Prompt user to connect their MetaMask wallet

async function connectWallet() ,

 try ,

 await window.ethereum.enable(); // Deprecated, switch to ethereum.request(, method:

'eth_requestAccounts' -) if issues arise

 console.log('Wallet connected!');

 - catch (error) ,

 console.error('User denied account access');

 -

-

// Contract ABI & Address

const contractABI = */* ABI JSON here */+;

const contractAddress = '0x...'; // Replace with your contract's address

// Creating contract instance

const lpStakingContract = new web3.eth.Contract(contractABI, contractAddress);

// Function to stake tokens

async function stakeTokens(amount, lockDuration) ,

 const accounts = await web3.eth.getAccounts();

 const account = accounts*0+; // We use the first account provided by MetaMask

 const amountToSend = web3.utils.toWei(amount.toString(), 'ether'); // Convert amount to Wei (if

using Ether denominations)

 try ,

 await lpStakingContract.methods.stake(amountToSend, lockDuration).send(, from: account -);

 console.log(`Staked $,amount- tokens for $,lockDuration- years`);

 - catch (error) ,

 console.error('Error staking tokens:', error);

 -

-

// Function to unstake tokens

async function unstakeTokens() ,

 const accounts = await web3.eth.getAccounts();

 const account = accounts*0+;

 try ,

 await lpStakingContract.methods.unstake().send(, from: account -);

 console.log('Tokens unstaked');

 - catch (error) ,

 console.error('Error unstaking tokens:', error);

 -

-

// Function to claim rewards

async function claimRewards() ,

 const accounts = await web3.eth.getAccounts();

 const account = accounts*0+;

 try ,

 await lpStakingContract.methods.claimReward().send(, from: account -);

 console.log('Rewards claimed');

 - catch (error) ,

 console.error('Error claiming rewards:', error);

 -

-Usage

This script provides functions to connect to a user’s wallet, stake tokens, unstake them, and claim

rewards. Users would need to:

1. Connect their wallet using the connectWallet function.

2. Call stakeTokens with the amount and the desired lock duration.

3. Use unstakeTokens to remove their stake after the lock period ends.

4. Call claimRewards to retrieve any earned rewards.

Integration

To integrate this into a DApp, you would include these scripts in your application's frontend. You'd

also need a user interface that calls these functions, which could be built using HTML/CSS/JS or a

framework like React.

This setup assumes that the contract is already deployed and functioning as expected, and that users

have MetaMask or similar installed and set up for Binance Smart Chain.

Staking calamari

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.4;

interface IBEP20 ,

 function totalSupply() external view returns (uint256);

 function balanceOf(address account) external view returns (uint256);

 function transfer(address recipient, uint256 amount) external returns (bool);

 function allowance(address owner, address spender) external view returns (uint256);

 function approve(address spender, uint256 amount) external returns (bool);

 function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

 event Transfer(address indexed from, address indexed to, uint256 value);

 event Approval(address indexed owner, address indexed spender, uint256 value);

-

contract LPStaking ,

 IBEP20 public stakingToken = IBEP20(0xd9938C445897e6BDD3cCdA842d55104e7C58d65c); //

Calamari Ingots "Beskar" token address

 struct Stake ,

 uint256 amount;

 uint256 startTime;

 -

 mapping(address => Stake) public stakes;

 mapping(address => uint256) public rewards;

 address public owner;

 uint256 public annualPercentageRate = 20; // Example APR set at 20%

 constructor() ,

 owner = msg.sender;

 -

 modifier onlyOwner() ,

 require(msg.sender == owner, "Not owner");

 _;

 -

 function stake(uint256 _amount) public ,

 require(stakingToken.transferFrom(msg.sender, address(this), _amount), "Transfer failed");

 stakes*msg.sender+.amount += _amount;

 stakes*msg.sender+.startTime = block.timestamp; // Update the startTime on new stake

 -

 function unstake(uint256 _amount) public ,

 require(stakes*msg.sender+.amount >= _amount, "Insufficient staked amount");

 require(block.timestamp > stakes*msg.sender+.startTime + 1 weeks, "Stake is locked"); //

Assuming a 1-week lockup period

 stakes*msg.sender+.amount -= _amount;

 stakingToken.transfer(msg.sender, _amount);

 -

 function claimRewards() public ,

 uint256 reward = calculateReward(msg.sender);

 require(reward > 0, "No rewards available");

 rewards*msg.sender+ = 0;

 stakingToken.transfer(msg.sender, reward);

 -

 function calculateReward(address _staker) internal view returns (uint256) ,

 if (stakes*_staker+.startTime + 1 weeks > block.timestamp) ,

 return 0; // No rewards if locked

 -

 uint256 stakedPeriod = block.timestamp - stakes*_staker+.startTime;

 uint256 dailyRate = annualPercentageRate / 365; // Calculate daily rate from APR

 return (stakes*_staker+.amount * stakedPeriod / 86400) * dailyRate / 100; // Adjust reward

calculation

 -

 // Utility function to adjust rewards manually or change APR

 function setAPR(uint256 _newAPR) public onlyOwner ,

 annualPercentageRate = _newAPR;

 -

-

How to stake Beskar

Step-by-Step Guide to Staking Tokens via Remix

Step 1: Setup Your Environment

 Open Remix: Go to Remix IDE and set up your environment.

 Load the Contract: If not already loaded, you can create a new file in the "File Explorers" tab,

paste the contract code into this file, and save it.

 Compile the Contract: Navigate to the "Solidity Compiler" tab, select the correct compiler

version (matching the version in your contract, which is ^0.8.4), and click "Compile".

Step 2: Deploy the Contract (If Not Already Deployed)

 If the contract isn’t deployed, you can deploy it directly from Remix:

 In the "Deploy & Run Transactions" tab, select "Injected Web3" from the "Environment"

dropdown to connect to MetaMask.

 Select the account with the tokens you want to stake.

 Click "Deploy" to deploy your contract to the network (make sure you are connected to

the correct network like Binance Smart Chain).

Step 3: Interact with the Deployed Contract

 Load the Deployed Contract:

 If the contract is already deployed, you can interact with it by using the "At Address"

feature in the "Deploy & Run Transactions" tab.

 Paste the deployed contract address into the "At Address" field and click "At Address" to

load the deployed contract.

Step 4: Approve and Stake Tokens

 Approve the Contract: Before staking, your tokens must be approved for the contract to use

them.

 Locate the token contract in Remix (you might need the token contract ABI and address).

 Use the approve function to allow the staking contract to spend the tokens. You will

need to specify the amount and the staking contract address.

 Example: If you want to stake 100 tokens, call approve with the staking contract's

address and 100 as the amount.

 Stake the Tokens:

 Go back to the loaded staking contract in Remix.

 Enter the amount you want to stake in the stake function input.

 Click "transact" or "write" to execute the staking transaction.

 Confirm the transaction in MetaMask.

Step 5: Verify the Stake

 You can verify your staked tokens by checking the state in Remix:

 Use any public view functions available in the contract to check your staked amount and

any other relevant details.

Important Notes:

 Ensure that you have sufficient BNB or appropriate blockchain currency for gas fees in your

wallet.

 Double-check the network and addresses you are interacting with to avoid any mishaps.

 Consider testing your interactions on a testnet before moving to the mainnet to ensure

everything works as expected.

This process will enable you to stake tokens using the LP Staking contract directly from Remix IDE,

leveraging the Ethereum or Binance Smart Chain networks and your MetaMask wallet for

transactions.

